7 research outputs found

    Analytic frameworks for assessing dialogic argumentation in online learning environments

    Get PDF
    Over the last decade, researchers have developed sophisticated online learning environments to support students engaging in argumentation. This review first considers the range of functionalities incorporated within these online environments. The review then presents five categories of analytic frameworks focusing on (1) formal argumentation structure, (2) normative quality, (3) nature and function of contributions within the dialog, (4) epistemic nature of reasoning, and (5) patterns and trajectories of participant interaction. Example analytic frameworks from each category are presented in detail rich enough to illustrate their nature and structure. This rich detail is intended to facilitate researchers’ identification of possible frameworks to draw upon in developing or adopting analytic methods for their own work. Each framework is applied to a shared segment of student dialog to facilitate this illustration and comparison process. Synthetic discussions of each category consider the frameworks in light of the underlying theoretical perspectives on argumentation, pedagogical goals, and online environmental structures. Ultimately the review underscores the diversity of perspectives represented in this research, the importance of clearly specifying theoretical and environmental commitments throughout the process of developing or adopting an analytic framework, and the role of analytic frameworks in the future development of online learning environments for argumentation

    User-driven development of an innovative software tool to support molecular tumor boards

    No full text

    Toward a Model of Knowledge-Based Graph Comprehension

    No full text
    Abstract. Research on graph comprehension has been concerned with relatively low-level information extraction. However, laboratory studies often produce conflicting findings because real-world graph interpretation requires going beyond the data presentation to make inferences and solve problems. Furthermore, in real-world settings, graphical information is presented in the context of relevant prior knowledge. According to our model, knowledge-based graph comprehension involves an interaction of top-down and bottom up processes. Several types of knowledge are brought to bear on graphs: domain knowledge, graphical skills, and explanatory skills. During the initial processing, people chunk the visual features in the graphs. Nevertheless, prior knowledge guides the processing of visual features. We outline the key assumptions of this model and show how this model explains the extant data and generates testable predictions.
    corecore